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Tobacco use is a major cause of disease and premature death in the United States. Nicotine is considered the
key component of tobacco responsible for addiction in human smokers. Accumulating evidence supports an
important role for the hypocretin (orexin) neuropeptide system in regulating the reinforcing properties of
most major drugs of abuse, including nicotine. Here, data showing that nicotine activates hypocretin-
producing neurons in the lateral hypothalamus, and that disruption of hypocretin transmission decreases
nicotine self-administration behavior in rats will be reviewed. Recent findings suggesting that plasma
hypocretin levels may be related to the magnitude of cigarette craving in abstinent smokers will be discussed.
Finally, the data suggesting that hypocretin transmission in the insular cortex may play an important role in
regulating nicotine self-administration behavior in rats will be reviewed. This latter finding may provide
mechanistic insight into the apparent disruption of tobacco addiction reported in human smokers with
stroke-associated damage to the insular cortex.
l rights reserved.
© 2010 Elsevier Inc. All rights reserved.
1. Introduction

Cigarette smoking is one of the largest causes of preventable death
and disease in developed countries. Tobacco-related disease is
responsible for approximately 440,000 deaths and $160 billion in
health-related costs in the United States annually (Centers for Disease
Control and Prevention, 2007). Despite the well-known negative
health consequences associated with the tobacco smoking habit, only
about 10% of smokers who attempt to quit annually without the help
of smoking cessation agents remain abstinent after 1 year (Knight et
al., 2009). Nicotine is considered the major reinforcing component of
tobacco responsible for addiction in human smokers (Stolerman and
Jarvis, 1995). Nicotine amplifies reward signals in the brain similar to
other major drugs of abuse (Rice and Cragg, 2004), and this action
likely accounts for its intrinsic rewarding properties and its ability to
increase sensitivity to rewarding non-drug environmental stimuli
(Kenny, 2007). Obtaining the stimulatory effects of nicotine on brain
reward circuitries likely plays a central role in motivating tobacco
consumption and contributes to the persistence of the habit (Donny
et al., 2003 and Kenny, 2007).

To date, most investigations into the neurobiological mechanisms
of nicotine reinforcement have focused on the role of the mesoac-
cumbens dopamine system, which comprises dopamine-containing
neurons that arise in the ventral tegmental area (VTA) and project to
the nucleus accumbens (NAcc); see Fig. 1. Indeed considerable
evidence now supports a key role for mesoaccumbens dopamine
transmission in nicotine reinforcement (Corrigall et al., 1994 and 1992
and David et al., 2006 and Fu et al., 2000 and Grillner and Svensson,
2000 and Ikemoto et al., 2006 and Kenny et al., 2009 and Laviolette
and van der Kooy, 2003 and Mansvelder and McGehee, 2000 and
Maskos et al., 2005). However, emerging data suggests that
neurotransmitters other than dopamine and brain regions outside
the mesoaccumbens axis may also play important roles in the
motivational properties of nicotine. In particular, much interest has
focused recently on the hypocretin (orexin) neuropeptide system in
regulating the motivational properties of various drugs of abuse.
Recent data from our laboratory and others suggest that hypocretin
transmission is involved in nicotine reinforcement (Hollander et al.,
2008 and Lesage et al., 2010). The finding that tobacco addiction can
be disrupted in human stroke patients with damage to the insular
cortex further emphasizes the importance of non-mesoaccumbens
brain regions in tobacco smoking (Naqvi et al., 2007). Here, the role
for hypocretin transmission in drug reward, with an emphasis on
nicotine, is reviewed. In addition, brain regions within which
hypocretin transmission may regulate nicotine reward processes are
considered.

1.1. Hypocretin neuropeptides

Hypocretin-1 and -2 are 33- and 28-amino acid residue peptides,
respectively, derived from the common 131-amino acid prepro-
hypocretin precursor peptide. Prepro-hypocretin was first identified
by directional tag polymerase chain reaction (PCR) subtractive
hybridization as one of a number of mRNA transcripts that are
selectively expressed in the hypothalamus (Gautvik et al., 1996).
Subsequently, de Lecea et al. (1998) demonstrated that prepro-
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Fig. 1. Schematic representation of addiction-relevant brain regions regulated by
hypothalamic hypocretin (Hcrt) neurons. Hypocretin neurons arise in the lateral
hypothalamus and perifornical area and project to the ventral tegmental area (VTA),
nucleus accumbens (NAcc) and the insula. Dopamine-containing neurons arise in the
VTA and project to the NAcc, insula and to hypothalamic Hcrt neurons. GABAergic
projects arise in the NAcc and project to the VTA and insula, but not directly to
hypothalamic Hcrt neurons.
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hypocretin was expressed almost exclusively in a few thousand
neuronal cell bodies in posterior and lateral hypothalamic (LH) areas,
and that this precursor encoded the hypocretin-1 (Hcrt-1) and
hypocretin-2 (Hcrt-2) peptides. The name hypocretin reflects the
fact that these peptides are synthesized in the hypothalamus and are
similar to the incretin class of hormones and in particular secretin (de
Lecea et al., 1998). Almost simultaneously, Sakurai et al. (1998)
identified the same precursor and cleaved peptide products in the
posterior and LH, and termed these peptides the orexins. The orexins
were identified during high-throughput screening of the ability of rat
brain extracts to activate orphan G-protein coupled receptors
(GPCRs). Brain extracts activated an orphan GPCR originally termed
HFGAN72, de-orphanized as the orexin-1 (OX1) receptor and
synonymous with the Hcrt-1 receptor. When brain extracts were
purified the active component was identified as orexin-A peptide
(Sakurai et al., 1998), synonymous with Hcrt-1 peptide. Subsequently,
a second orexin receptor (OX2; Hcrt-2 receptor) was identified
through bioinformatic, full-length cloning and sequencing analyses,
which can be activated similarly by Hcrt-1 and Hcrt-2 peptides
(Sakurai et al., 1998). Sakurai et al., 1998 also showed that periods of
negative energy balance increased prepro-hypocretin expression in
hypothalamus (Sakurai et al., 1998). Furthermore, intracerebroven-
tricular (ICV) administration of Hcrt-1 or Hcrt-2 peptide stimulated
feeding in non-fasted rats (Sakurai et al., 1998). It was therefore
proposed that hypocretins may regulate feeding behaviors and the
name orexinwas coined based upon these observations; deriving from
orexis, the Greek word for appetite (Sakurai et al., 1998).

1.2. Physiological roles of the hypocretins

As noted above, hypocretins appear to play a role in feeding
behavior (Sakurai et al., 1998). Indeed, the Hcrt-1 receptor antagonist
SB-334867 decreases food consumption in rats (White et al., 2005),
perhaps by enhancing satiety state (Ishii et al., 2004, 2005a,b and
Rodgers et al., 2001). Isolated hypocretin neurons are inhibited by
glucose and leptin, which usually signal satiety, and stimulated by
ghrelin, which usually motivates feeding (Yamanaka et al., 2003).
However, hypocretin-induced modulation of feeding behaviors is
modest when compared with other feeding-related neuropeptides
such as neuropeptide Y (NPY) (Ida et al., 1999). Some studies have
found modest or no role whatsoever for hypocretins in feeding
behaviors (Fujiki et al., 2001 and Swart et al., 2001 and Yamanaka
et al., 1999 and Yoshida et al., 2001). Transgenic mice in which
prepro-hypocretin was genetically ablated failed to respond to fasting
with the increased wakefulness and activity levels typically observed
in wildtype mice (Yamanaka et al., 2003). Furthermore, Funato et al.
(2009) found that overexpression of prepro-hypocretin conferred
resistance to diet-induced obesity and insulin resistance in mice.
These effects were related to increased energy expenditure and
reduced caloric intake, and were mediated through the Hcrt-2
receptor (Funato et al., 2009). It has therefore been proposed that
hypocretinsmay notmodulate states of satiety and energy balance per
se, but insteadmay provide a link between energy balance and arousal
state. In this manner hypocretins can promote the increased
wakefulness and activity usually associated with periods of reduced
food availability (Sutcliffe and de Lecea, 2002 and Yamanaka et al.,
2003), or compensatory increases in activity in response to a high-fat
diet to facilitate themaintenance of energy homeostasis (Funato et al.,
2009). There is now convincing evidence that hypocretins indeed
modulate states of arousal and wakefulness (Adamantidis et al.,
2007). For example, dogs with null mutation in the Hcrt-2 receptor
gene or prepro-hypocretin deficient mice display a behavioral state
very reminiscent of human narcolepsy (Chemelli et al., 1999 and Lin
et al., 1999). Other behavioral and physiological roles in which the
hypocretins have been implicated include glycolysis (Sikder and
Kodadek, 2007), gastric acid secretion (Takahashi et al., 1999),
respiratory drive (Young et al., 2005), sexual behavior (Muschamp
et al., 2007), depressive disorders (Brundin et al., 2007, Ito et al., 2008
and Lutter et al., 2008) and anxiety/panic states (Johnson et al., 2009).
1.3. Hypocretins in drug reward: opiates

There are dense reciprocal innervations between hypocretin
neurons in the hypothalamus and areas of the brain involved in
drug addiction, including the prefrontal cortex (PFC), nucleus
accumbens (NAcc), central nucleus of the amygdala (CeA), bed
nucleus of the stria terminalis (BNST) and ventral tegmental area
(VTA) (Baldo et al., 2003 and Nambu et al., 1999 and Peyron et al.,
1998 and Yoshida et al., 2006). It is perhaps not surprising then that
hypocretins have been implicated in the behavioral and physiological
actions of drugs of abuse; for recent reviews see Aston-Jones et al.
(2009), Borgland et al. (2009b), Boutrel and de Lecea (2008) and
DiLeone et al. (2003). Aston-Jones et al. (2009) were the first to
implicate the hypocretins, and in particular the Hcrt-1 receptor, in
drug reward (Harris et al., 2005). In their study it was shown that
exposure to environmental cues in a place conditioning procedure
that were repeatedly paired with morphine or other reinforcers
robustly activated hypocretin-positive LH neurons in rats, as mea-
sured by Fos immunostaining (Harris et al., 2005). Lesions of
hypocretin-enriched areas of the LH blocked a conditioned place
preference for morphine (Harris et al., 2007). Conversely, chemical
activation of LH hypocretin neurons, achieved by infusing the NPY-Y4

receptor agonist rat pancreatic polypeptide (rPP) directly into the LH
(Harris et al., 2005), reinstated a previously extinguished preference
for amorphine-associated environment, an effect blocked by the Hcrt-
1 receptor antagonist SB-334867 (Harris et al., 2005). Genetic deletion
of the prepro-hypocretin gene attenuates the conditioned rewarding
and hyperlocomotive effects of morphine in mice, as measured in
place conditioning procedures (Narita et al., 2006 and Sharf et al.,
2010a). At the neuroanatomical level, microinfusion of Hcrt-1 or Hcrt-
2 peptides into the VTA increased levels of dopamine and its major
metabolites in the shell region of the NAcc (Narita et al., 2006),
suggesting that hypocretin transmission in VTA may play a role in
drug-seeking behavior. Interestingly, intra-VTA administration of
Hcrt-1 also increased dopamine release in the prefrontal cortex, but
not the core region of NAcc (Vittoz and Berridge, 2006 and Vittoz et al.,
2008). More directly, infusion of Hcrt-1 peptide directly into the VTA
reinstated an extinguished morphine-conditioned place preference in
rats (Harris et al., 2005). Finally, it is important to point out that
hypocretin transmission has also been implicated in aspects of the
aversive opiate withdrawal syndrome (Georgescu et al., 2003 and
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Sharf et al., 2008), and could therefore control opiate intake through
negative reinforcement processes (Kenny et al., 2006).

1.4. Hypocretins in drug reward: psychomotor stimulants

In addition to opiates, hypocretin transmission also regulates the
neurochemical, motivational and neuroplastic effects of cocaine and
amphetamine. Amphetamine treatment or exposure to a cocaine-
paired environment increases the activation of hypocretin neurons, as
measured by Fos immunoreactivity (Fadel et al., 2002 and Harris et al.,
2005 and McPherson et al., 2007 and Quarta et al., 2009). Further, SB-
334867 attenuates amphetamine- and cocaine-induced increases in
mesoaccumbens dopamine transmission (Espana et al., 2010 and
Quarta et al., 2009). Blockade of Hcrt-1 but not Hcrt-2 receptors can
attenuate reinstatement of extinguished cocaine-seeking responses
induced by cocaine-paired discrete stimuli (Smith et al., 2009) or a
cocaine-paired context (Smith et al., 2010) in rats. Boutrel et al.
(2005) have shown that ICV infusion of Hcrt-1 peptide reinstated
extinguished operant responding for cocaine. Moreover, this effects
was abolished by simultaneous blockade of noradrenergic and
corticotrophin releasing hormone 1 (CRF-1) receptors (Boutrel et
al., 2005). Conversely, SB-334867 attenuated stress-induced rein-
statement of extinguished cocaine-seeking behavior (Boutrel et al.,
2005). Interactions between Hcrt-1 receptors and brain stress systems
may therefore regulate drug-seeking behavior, and there is an
accumulating body of evidence in support of such a relationship
(Paneda et al., 2005 and Winsky-Sommerer et al., 2005). Indeed,
footshock stress activates orexin neurons in the perifornical-dor-
somedial hypothalamus (Harris et al., 2005), and behavioral stressors
increase Hcrt-1 peptide mRNA levels in the LH (Ida et al., 2000). Hcrt-
1 peptide increases circulating corticosterone levels in a dose-
dependent manner following ICV administration (Ida et al., 2000),
and also increases circulating levels of adrenocorticotropic hormone
(ACTH) and central expression of CRF mRNA (Al-Barazanji et al., 2001
and Russell et al., 2001). Hcrt-1 receptors can augment the release of
the potent stress hormone secretagogue norepinephrine (Hirota et al.,
2001 and Matsumura et al., 2001 and Walling et al., 2004). CRF-
containing neurons synapse onto hypocretin-positive cells in the LH,
hypocretin neurons express CRF-1 and CRF-2 receptors, and applica-
tion of CRF directly onto LH slices increases the firing rate of
hypocretin neurons (Winsky-Sommerer et al., 2004). Further, the
non-selective CRF receptor antagonist α-helical-CRF blocks hypocre-
tin-induced grooming and face-washing behaviors in rats (Ida et al.,
2000). Taken together, these data suggest that hypocretin and CRF
systems may interact in regulating drug-seeking behaviors. There is
evidence, however, that both systems can also act independently of
one another. Wang et al. (2009) have shown that intra-VTA injection
of Hcrt-1 peptide increases extracellular levels of dopamine and
glutamate in the VTA, and reinstates extinguished operant responding
for cocaine. These effects were blocked by the Hcrt-1 receptor
antagonist SB-408124 but not by α-helical-CRF (Wang et al., 2009).
Furthermore, intra-VTA administration of α-helical-CRF blocked
footshock-induced increases in extracellular glutamate and reinstate-
ment of cocaine-seeking (Wang et al., 2005), whereas SB-408124 did
not (Wang et al., 2009). These data are somewhat at odds with the
findings of Boutrel et al. (2005), who reported that brain-wide
disruption of noradrenergic and CRF-1 receptor systems abolished
hypocretin-stimulated cocaine-seeking. Hence, it is likely that
hypocretin and CRF systems interact to regulate cocaine-seeking in
various brain regions, but that this interaction does not occur in the
VTA.

As noted above, ICV or intra-VTA administration of Hcrt-1 peptide
reinstates extinguished cocaine-seeking behaviors. Boutrel et al.
(2005) found that ICV infusion of Hcrt-1 peptide did not alter ongoing
cocaine-self-administration behavior. Hypocretin transmission may
therefore selectively regulate “relapse” like behaviors in abstinent
rats, but play no role in the reinforcing effects of the drug that
maintain ongoing drug-taking behavior (Aston-Jones et al., 2008 and
Smith et al., 2009). Alternatively, it is possible that cocaine
consumption activates hypocretin systems to such a degree that
further activation through ICV administration of Hcrt-1 has no effects
on drug intake. Consistent with this possibility, blockade of Hcrt-1
receptors using SB-334867 decreased cocaine self-administration in
rats (Borgland et al., 2009a and Espana et al., 2010). Intra-VTA
infusion of SB-334867 also decreased responding for cocaine.
Interestingly, the inhibitory effects of SB-334867 on cocaine self-
administration behavior were most evident when rats responded for
the drug under a progressive ratio (PR) schedule of reinforcement
(Borgland et al., 2009a and Espana et al., 2010), whereas SB-334867
had no effects on cocaine intake under a low stringency fixed-ratio 1
(FR1) reinforcement schedule (Espana et al., 2010 and Smith et al.,
2009). In unpublished observations from our laboratorywe found that
SB-334867 dose-dependently decreased cocaine self-administration
under a more stringent FR5 schedule of reinforcement (Hollander and
Kenny, unpublished observations). Thus, hypocretin transmission
may be necessary to maintain drug-taking behavior when the high
levels of effort are required to obtain the drug, but not when the drug
is readily available. Consistent with this possibility, the inhibitory
effects of SB-334867 on consumption of a palatable reinforcer (high-
fat chocolate food) were recently shown to be dependent upon the
level of effort necessary to obtain the reinforcer (Borgland et al.,
2009a).

In addition to regulating the behavioral actions of cocaine and
amphetamine, hypocretin transmission also plays an important role
in the neuroplasticity induced by these drugs. Hcrt-1 peptide was
shown to potentiate NMDA receptor-mediated excitatory post-
synaptic currents (EPSCs) in VTA dopamine neurons and to
translocate NMDA receptors to the surface of these cells (Borgland
et al., 2006), effects blocked by systemic administration of SB-334867
(Borgland et al., 2006). Activation of Hcrt-1 receptors facilitated
NMDA receptor-mediated transmission in the VTA through a protein
kinase C (PKC) and phospholipase C (PLC) dependent mechanism
(Borgland et al., 2006), suggesting that Hcrt-1 receptors couple to Gq-
proteins in vivo. Hcrt-1 peptide also facilitated cocaine-induced
potentiation of excitatory inputs to the VTA (Borgland et al., 2006),
highlighting a potential mechanism through which Hcrt-1 receptors
may induce persistent alterations in the motivation to consume
cocaine. Interestingly, strengthening of presynaptic glutamatergic
inputs to the VTA occurs only in rats that respond for high-value
reinforcers such as cocaine or high-fat food (Borgland et al., 2009a).
More recently, it was shown that the mixed Hcrt-1 and Hcrt-2
receptor antagonist DORA-1 completely blocked the altered gene
expression patterns seen in the VTA, dorsal raphe nucleus and
ventrolateral preoptic nucleus in amphetamine-sensitized mice
(Winrow et al., 2010). In particular, the modified expression patterns
of genes associated with synaptic plasticity in amphetamine-treated
mice were abolished by DORA-1 (Winrow et al., 2010).

1.5. Hypocretins in drug reward: alcohol

Hypocretin transmission plays an important role in alcohol
consumption and alcohol seeking during periods of abstinence
(Lawrence, 2009). Reinstatement of extinguished alcohol seeking is
associated with activation of hypocretin neurons (Dayas et al., 2008
and Hamlin et al., 2008). Intra-LH infusion of Hcrt-1 peptide
stimulates ethanol consumption (Schneider et al., 2007). Moreover,
SB-334867 dose-dependently decreases alcohol consumption in rats
(Lawrence et al., 2006 and Moorman and Aston-Jones, 2009), and
attenuates cue- and yohimbine-induced reinstatement of extin-
guished alcohol seeking (Lawrence et al., 2006 and Richards et al.,
2008). Intriguing data is emerging related to the mechanisms through
which hypocretin transmission may regulate ethanol consumption.
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Chronic ethanol intake increases levels of circulating triglycerides,
which in turn can stimulate hypothalamic hypocretin neurons and
promote ethanol intake (Barson et al., 2009). This suggests that
hypocretin transmission may regulate the close correlation between
alcohol consumption and preference for fatty foods, and that fatty
foods may provoke alcohol seeking through stimulation of hypocretin
systems. More recently it was shown that ICV administration of
neuropeptide S (NPS) activated hypocretin neurons (Niimi, 2006) and
that persistent increases in alcohol seeking induced by NPS are related
to its stimulatory effects on hypocretin transmission (Cannella et al.,
2009).

Finally, in addition to opiates, psychomotor stimulants and alcohol,
hypocretin transmission also plays an important role in regulating
seeking behaviors for non-drug reinforcers, including high-fat
palatable food (Clegg et al., 2002 and Nair et al., 2008 and Zheng et
al., 2007), sucrose (Richards et al., 2008 and Thorpe et al., 2005) and
copulation (Muschamp et al., 2007). Recent findings using SB-334867,
Hcrt knockout mice and RNA interference-mediated knockdown of
orexin have shown that hypocretin transmission at Hcrt-1 receptors
plays an important role in motivation to respond for food reinforce-
ment, supporting a role for hypocretin transmission in maintaining
physiological levels of caloric intake (Sharf et al., 2010b). Overall,
these findings highlight the important role for hypocretin transmis-
sion in the reinforcing and conditioned rewarding effects of drugs of
abuse and non-drug reinforcers, and the motivation to seek drugs
during periods of abstinence. In addition, the VTA appears to be an
important brain site regulating these actions of hypocretin.

2. Hypocretin transmission regulates the reinforcing effects
of nicotine

Emerging evidence suggests that hypocretin transmission also
plays a key role in the reinforcing properties of nicotine and may
contribute the persistence of the tobacco habit in human smokers.
Intravenous nicotine self-administration increased Hcrt-1 receptor
expression in the arcuate nucleus of the hypothalamus, but decreased
Hcrt-1 receptor expression in the rostral lateral hypothalamus of rats
(Corrigall, 2009 and Lesage et al., 2010). Chronic systemic nicotine
treatment dose-dependently increased expression levels of Hcrt-1
and Hcrt-2 receptors and prepro-hypocretin in the hypothalamus of
rats (Kane et al., 2000). Somewhat paradoxically, in a separate study
Kane et al. (2001) found that chronic nicotine treatment decreased
the affinity and density of Hcrt-1 peptide binding sites in hypotha-
lamic tissues. Consistent with a stimulatory effect of nicotine on
hypocretin transmission, acute nicotine injections increased Fos
immunoreactivity selectively in Hcrt-1 peptide-positive hypothalamic
neurons (Pasumarthi et al., 2006). Furthermore, nicotine-induced
activation of the paraventricular nucleus of the hypothalamus (PVN),
also measured by increased Fos immunoreactivity, was abolished in
mutant mice in which the gene for prepro-hypocretin was genetically
deleted (Plaza-Zabala et al., 2010).

Our laboratory found that SB-334867 dose-dependently de-
creased intravenous nicotine self-administration behavior in rats
tested under FR5 and PR schedules of reinforcement, at doses that
did not alter responding for food rewards under the same
reinforcement schedules (Hollander et al., 2008). Similarly, Lesage
et al. (2010) also found that SB-334867 decreased nicotine self-
administration behavior in rats, and have extended these findings by
showing that the mixed Hcrt-1/-2 receptor antagonist almorexant
also decreased nicotine intake. In common with other drugs of
abuse, nicotine amplifies reward signals in the brain (Rice and Cragg,
2004), reflected behaviorally as nicotine-induced lowering of
intracranial self-stimulation (ICSS) thresholds in rats (Bauco and
Wise, 1994 and Harrison et al., 2002 and Huston-Lyons and
Kornetsky, 1992 and Kenny and Markou, 2006). We found that SB-
334867 dose-dependently attenuated nicotine-induced lowering of
ICSS thresholds in rats (Hollander et al., 2008). Similarly, systemic
nicotine administration increased responding for sucrose rewards in
rats responding under a PR schedule of reinforcement, and the
mixed Hcrt-1/-2 receptor antagonist DORA-1 attenuated this effect
(Winrow et al., 2010). Thus, blockade of hypocretin transmission
likely decreases nicotine intake by abolishing the stimulatory effects
of the drug on brain reward systems. Finally, ICV infusion of Hcrt-1
peptide reinstated extinguished nicotine seeking responses in mice
(Plaza-Zabala et al., 2010), suggesting that hypocretin transmission
regulates both ongoing nicotine consumption and nicotine seeking
during periods of abstinence.

Evidence in human smokers is consistent with a role for
hypocretin transmission in maintaining the persistence of the tobacco
habit. Circulating levels of Hcrt-1 peptide were similar between
smokers and non-smokers (Aksu et al., 2009 and von der Goltz et al.,
2009). However, when abstinent smokers were allocated to two
groups based on their craving for tobacco (low versus high), a
significant negative correlation was detected between plasma Hcrt-1
peptide levels and craving (von der Goltz et al., 2009). Assuming that
the source of circulating Hcrt-1 peptide is from the central nervous
system and not produced systemically, these findings support the
view that hypocretin transmission plays a role in tobacco craving in
abstinent smokers.

As noted above, the VTA is an important brain site in which
hypocretin transmission regulates the rewarding actions of abused
drugs. The role of hypocretin transmission in the VTA in regulating
nicotine intake has not yet been assessed. However, data from our
laboratory and others suggest that hypocretin transmission in
cortical areas of the brain may be involved in the behavioral actions
of nicotine. Obtaining the cognitive-enhancing properties of nicotine
contained in tobacco smoke is hypothesized to play a role in
sustaining tobacco smoking behavior (Evans and Drobes, 2009).
Fadel et al. (2005) have shown that Hcrt-1 peptide stimulates basal
forebrain cholinergic neurons and thereby triggers the release of
acetylcholine into the PFC. Further, nicotine activated Hcrt-1-
containing neurons that project to basal forebrain cholinergic
neurons (Pasumarthi and Fadel, 2008). Similarly, Lambe et al.
(2003) have shown that nicotine stimulates corticothalamic neurons
to increase glutamatergic transmission in PFC. It was also found that
hypocretin transmission stimulates the same corticothalamic affer-
ents as nicotine (Lambe and Aghajanian, 2003 and Lambe et al.,
2005), perhaps through inhibition of hyperpolarization-activated/
cyclic nucleotide (HCN)-gated channels (Li et al., 2009). It has
therefore been proposed that the stimulatory action of hypocretin
transmission on cortical cholinergic and glutamatergic transmission
may serve to integrate hypothalamic arousal and forebrain attention
systems (Fadel et al., 2005), and could contribute to nicotine-
induced increases in attention (Lambe et al., 2003 and Pasumarthi
and Fadel, 2008). As discussed below, hypocretin transmission in
cortical regions may also regulate nicotine self-administration
behavior.

3. The insular cortex and tobacco smoking

As recently discussed as part of this mini-review series (Paulus
et al., 2009), the insula is a cortical brain region involved in processing
interoceptive information related to emotional and motivational
states to facilitate maintenance of physiological homeostasis (Gray
and Critchley, 2007). The insula is hypothesized to play a key role in
encoding the taste and relative incentive value of food (Balleine and
Dickinson, 2000 and Lin et al., 2009 and Small et al., 2001) and other
reinforcers (Liotti et al., 2001 and Liu et al., 2007). This brain region
may also regulate the experience of conscious urges and cravings,
including those for drugs of abuse (Damasio et al., 2000 and Gray and
Critchley, 2007 and Naqvi et al., 2007). Indeed, it was recently
proposed that the insula may detect disequilibrium between
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predicted internal body state and actual body state, and that the
magnitude of the message error derived from this insular-dependent
computation in drug users may drive drug-seeking behaviors (Paulus
et al., 2009). In support of this hypothesis is the recent observation
that stroke-associated damage to the insular cortex in human smokers
resulted in a profound disruption of tobacco addiction, characterized
by spontaneous cessation of the smoking habit and a low urge to
smoke thereafter (Naqvi et al., 2007). Conversely, abstinence-induced
cigarette craving in smokers is highly correlated with insular
activation (Wang et al., 2007). These data support an important role
for the insular cortex in drug addiction processes; for recent reviews
see (Goldstein et al., 2009 and Naqvi and Bechara, 2009). Indeed, the
insula innervates, and is in turn innervated, by many addiction-
relevant brain regions including the VTA and NAcc (Bubser et al., 2005
and Christie et al., 1987 and Reynolds and Zahm, 2005) (Fig. 1).

Data from our laboratory and others suggests that hypocretin
transmission in cortical areas of the brain may play an important role
in drug reward. Temporary inactivation of the insular cortex in rats,
achieved through intra-insula infusion of the local anesthetic
lidocaine, reversibly blocked amphetamine seeking behavior in rats
(Contreras et al., 2007). Interestingly, amphetamine seeking behavior
in rats was associated with simultaneous increases in Fos immuno-
reactivity in both insular cells and hypocretin-containing cells in the
LH (Contreras et al., 2007). This may represent the simultaneous
activation of two independent neurobiological substrates that are
involved in drug seeking in an unrelated manner. Alternatively, it is
possible that this temporally coincident activation of the insula and LH
hypocretin neurons may represent a direct link between these two
brain sites. Consistent with hypothesis and previous reports (Date
et al., 1999 and Peyron et al., 1998), we found dense innervation of
Hcrt-1 peptide-containing neurons throughout the insular cortex of
rats. In addition, we also detected the expression of Hcrt-1 receptors
on cells in this brain region. More importantly, direct administration
of SB-334867 into the insula, but not into the somatosensory cortex,
dose-dependently decreased nicotine self-administration but not
responding for food rewards in rats. These data suggest that insular
hypocretin transmission regulates the reinforcing effects of nicotine.
Considering the reciprocal innervation between the insular cortex,
hypothalamic hypocreint neurons and the mesoaccumbal dopamine
system (Alberto et al., 2006 and Bubser et al., 2005 and Uramura et al.,
2001 and Yoshida et al., 2006) (Fig. 1), it is possible that insular
hypocretin transmission may regulate nicotine intake by coordinating
the responsiveness of the NAcc and/or VTA to nicotine and nicotine-
paired environmental stimuli. Overall, these findings suggest that
decreased tobacco consumption in human smokers with stroke-
induced insular damage may arise at least in part from disruption of
hypocretin transmission in this brain region.

There are a number of mechanisms through which hypocretin
transmission in the insular cortex may impact nicotine intake in rats
and the tobacco habit in human smokers. Experimentally induced
stroke in rats increases plasma norepinephrine, epinephrine and
dopamine when the area of brain damage includes the insular cortex
(Smith et al., 1986), suggesting that the insula exerts a tonic inhibitory
influence on the sympathoadrenal system. Cigarette smoking is
known to activate the sympathetic nervous system (Narkiewicz
et al., 1998). Thus, activity of the insular cortex may influence tobacco
consumption through modulation of the autonomic nervous system
and the impact of tobacco on this system. Interestingly, the insular
cortex has one of the highest levels of extra-striatal dopamine
transmission in the brain (Jones et al., 1986). Furthermore, dopamine
transmission in this brain site regulates cocaine self-administration
behavior (Di Pietro et al., 2008) and reinstatement of extinguished
cocaine or sucrose seeking in rats (Di Pietro et al., 2006 and Hamlin
et al., 2006). Thus, it is an interesting possibility that insular
hypocretin transmission may regulate nicotine self-administration
in rats and tobacco smoking behavior in humans through modulation
of dopamine transmission in this brain site, similar to its proposed
role in the VTA (Borgland et al., 2006 and Harris et al., 2005).

4. Conclusions

The data reviewed above provide strong evidence for a critical role
for hypocretin transmission in regulating the reinforcing properties of
nicotine, and suggest that Hcrt-1 receptors may be important targets
for the development of novel therapeutics to aid smoking cessation
efforts. Hypocretin transmission in the mesoaccumbens axis is
involved in drug reward, but hypocretin transmission in cortical
areas may also be important. In particular, the finding that disruption
of hypocretin transmission at Hcrt-1 receptors in the insular cortex
decreases nicotine intake in rats suggests that destruction of insular
hypocretin transmission in smokers who suffer damage to this brain
region may explain the profound disruption of tobacco addiction
observed in these individuals.

Many important issues concerning the role of hypocretin trans-
mission in addiction remain to be solved. Future areas of investigation
will include identifying the precise neurocircuitries through hypo-
cretinergic transmission influences drug-seeking behavior. Although
impressive advances have been made in understanding the signaling
cascades activated in response to Hcrt receptor stimulation (Borgland
et al., 2006), much work still needs to done in order to refine our
understanding of the intracellular signaling events through which
hypocretinergic transmission regulates drug-seeking behavior. Also,
the long-term effects of drug consumption on hypocretinergic
transmission and the role of such plasticity in the development of
compulsive drug-taking behaviors is still relatively unclear. Finally,
the precise role for Hcrt-2 receptors in regulating drug-taking
behavior is still unclear and progress in this regard will likely
necessitate assessment of drug self-administration behavior in mice
with genetic manipulations in one or both of the Hcrt receptors and
the availability of highly selective Hcrt-2 ligands.

In summary, hypocretinergic transmission plays a key role in
regulating drug-seeking behaviors and the development of safe and
effective ligands at Hcrt-1 and Hcrt-2 receptors may have consider-
able clinical utility for the treatment of substance abuse disorders.
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